

15.4	Disturbing a Chemical Equilibriun Change in Temperature – <u>van't Ho</u>	n: Le Chatelier's Principle off Equation
	$\int_{n} \frac{K_{2}}{K_{1}} = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right)$	
At 25°C, is extrem With the $\Delta H^{\circ} = -11$	$N_2(g) + 3 H_2(g)$ $\Delta H^\circ = -91.8 \text{ kJ.mol}^{-1}, \text{ K} = 3.5 \times 10^8 - \text{ ho}$ help slow. help of a catalyst, the optimum temp $(1.3 \text{ kJ.mol}^{-1}$ at this temperature. Wha	y) ⇔ 2 NH ₃ (g) wever at this temperature the reaction perature for the reaction is 450°C. It is the value for K at this temperature?
K1 = 3 K2 = Sn <u>K2</u> Sm K2 Sm K2	$\frac{5 \times 10^8}{7} \qquad T_1 = 298 \text{ K}$ $\frac{7}{7} \qquad T_2 = 723 \text{ K}$ $\Delta H^\circ : - 111,300 \text{ J.mol}^{-1} \text{ K}^{-1}$ $R = 8,314 \text{ J.mol}^{-1} \text{ K}^{-1}$ $\frac{1}{723} - \frac{1}{298}$ $- \int_n (3.5 \times 10^8) = 13387(-1.9726 \times 10^{-3})$ $- 19.6734 = -26.4072$	Jm K2 = ·26.4072 + 19.6734 Jm K2 = ·6.7338 K2 = 1.19×10 ⁻³ @ 723K → Ouch o ~ 10" drop Nhile the decrease im K was expected since the process involved heating an Exothernic equilibrium, this decrease is dramatic.

Pleactants (g) <=> Products (g) An = mol of gas products - mol of gas reactants.				
∑ ∪ : = 0	0, 70, or <0			
ACTION	Equilibrium Shift			
a) Volume T, ie Pressure J	Joward the side with the greater number of gas molecules trying to uncrease the pressure if it can.*			
&) Volume I, ie Pressure î	Jonard the side with the fewest number of gas molecules trying to decrease the pressure if it can.*			
* ΔN = O ≈ Nothing the	equilibrium can do to counter any pressure changes			

<u>Action</u> ۱۰) ۱۰, ۹۲ ۷۱, ۹۲	EQUILIBRIUM SHIFT	<u>. [] ۲ни ?</u>
1 U3(g) + NU 0) &)	(g)	$\Delta \Pi = O$, Q Remains unchanged
2, 2, NOCP (g)	$\langle = \rangle 2 NO(g) + O(2)$	◎ + ● <=> ● + ● + ●
0) ይ/)	Jowards products Jowards Aractants	Δη>Ο Q>K Δη>Ο Q <k< td=""></k<>
3. N2(g) + 3	3H2(g) (=> 2 NH3(g)	● + ● + ● + ● <=> ● + ●
o) &)	Jowards reactants Jowards products	DU < 0 ' O < K DU < 0 ' O > K

	The production of ammonia is an exothermic process –
	$N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ Kc = 3.5×10^8 @ 25° C How can we maximize the production of [NH ₃].
(۵	Of Room tomperature. Ke is product favored
	However at room temperature this reaction is extremely slow. Very high Uctivation 20 speed it up heat it and lor use a catalyst to Rower the activation Energy
L) However the reaction is exothermic Thus heating it will result in Kic decreasing
	at 450°C, Kc = 1,19×10-3, Ihus while reaching equilibrium in a reasonable time, the equilibrium is now very reactant favored.
C,	Not dounted as this gaseous reaction has $\Delta n < 0$
	Therefore if P is uncreased, Then Q becomes > Kc, thereby cousing a shift towards products increasing the [NH3].

16.1	Introduction to Acids and Bases Acid and Base Definitions	
ARRI	HENIUS :	
	Actio - a substance containing hydrogen that, when dissolved in water, increases the concentration of H ⁺ ions.	
	BASE :- a substance containing the hydroxide group that, when dissolved in water uncreases the concentration of OH" ions.	R,
BRO	NSTED - LOWRY :	
	Acia - a substance that can donate a proton (H ⁺ ion).	
	BASE :- O substance that can accept a proton.	
	Os the Bronsted-LOWRY definition is none inclusive this is the definition that we	
	Nill focus on Jor example NH3 is a base, which would not be obvious under the Orrhenius definition.	L
	$NH_{3}(aq) + H_{2}O(g) \leq NH_{4}^{+} + OH^{-}$	
	Base Of ion concentration uncrease thus obviously fits the Orrhenius definition	r now tion