16.3 Acid and Base Strength Acid and Base Strength

	6 Strong Acids:
Acid:	$HCP HNO_3$ $HBr H_2504$ $HI HCPO_4$ $G Strang Bases$ $L OH Co (OH)_2$ $NoOH Ba (OH)_2$ $KOH Sr (OH)_2$
	lenized acid is indicated by red in the above diagram

16.3 Acid and Base Strength Acid and Base Hydrolysis Equilibria, Ka, and Kb

 K _a V	Values		K _a V	alues	
 Name of Acid	Acid	Ka	Name of Acid	Acid	Ka
 Sulfuric acid	H ₂ SO ₄	large	Hexaaquaaluminum ion	A1(H ₂ O) ₆ 3+	7.9 × 10 ⁻⁶
 Nitric acid	HUI HNO3	large	Hydrogen sulfide	H ₂ CO ₃ H ₂ S	4.2 × 10 ⁻ 1 × 10 ⁻⁷
 Hydronium ion	H₃O [∓]	1.0	Dihydrogen phosphate ion	H2PO4-	6.2×10^{-8}
 Hydrogen sulfate ion Phosphoric acid	HSO4 [−] H2PO4	1.2 × 10 ⁻² 7.5 × 10 ⁻³	Hypochlorous acid Ammonium ion	HC1O NH4+	3.5 × 10 ⁻⁸ 5.6 × 10 ⁻¹⁰
 Hexaaquairon(III) ion	Fe(H ₂ O) ₆ 3+	6.3 × 10 ⁻³	Hydrocyanic acid	HCN	4.0×10^{-10}
 Hydrofluoric acid	HF	7.4 × 10 ⁻⁴	Hexaaquairon(II) ion	Fe(H ₂ O) ₆ ²⁺	3.2 × 10 ⁻¹⁰
 Benzoic acid		6.3 × 10 ⁻⁴	Hydrogen carbonate ion Hydrogen phosphate ion	HPO ₄ 2-	3.6 × 10 ⁻¹³
 Acetic acid	CH3CO2H	1.8×10^{-5}	Water Hydrogen sulfide ion	H ₂ O HST	1.0 × 10 ⁻¹⁴ 1 × 10 ⁻¹⁹

The larger the Ko, the stronger the acid.

		aqueous solut	ION OT 1.15X10 ⁻²	M hydrobromic acid
	HBr	+ H₂O(I)	= H ₃ 0 ⁺	+ <u>Br</u>
	1.15 × 10-2		Ö	0
С	- 1.15 × 10-2		1.15×10-2	1.15×10-2
Е	0		1.15 × 10-2	1.15 × 10-2
	E	Lquillbaiun	concentrations	
	EH3	01] = 1.15×	10-2	
		$pH = - \log_{10}$	(1.15×10 ⁻²)	

What is the 1.0x10 ⁻⁵ M s	pH of an aq sodium hydro	ueous solut <mark>oxide</mark> ?	tion of pH :	= ?.0	a) 5 b) 6 c) 7	d) 8 e) 9	By Harr Bor Harr Harr
	la OH +	H. (I)	= Na ⁺	+	OH-		
I 1.0	D×10-5		0		0		
C - I	0 × 10- 5		1.0×10-5		1.0 × 10	-5	
E	0		1,0×10-5		1.0×10	-5	
	<mark>N₀</mark> OH	: Strong B	ase → 100%				
	<u>No</u> OH Гон ⁻ р OH р H р H	: Strong B] = 1,0×10 ! = -90310 : 5 + pOH = 14 + 5 = 14 pH = 9	ase → 100% 				

Calcu (HCIO	late the <mark>pH</mark> of , Ka = 3.5x10	f a 0.3 ⁻⁸).	72 M ac	ueous solution o	of hypocl	hlorous acio	d
	HOD	+ H	₂ O(I)	= H ₃ O ⁺	+ (20-	
	<u>0.372</u>			0		0	
c	- X			X		X	
E	0.312 - X			X		X	
3.5 ×10°° = (0	$2 \cdot \chi = \chi^2$			χ	<u>ا</u> جا	lisnegand as the lakes no chemi	is solution ical sonse
3.5 × 10 ⁻⁸ (0.31 X ² + 3.5	2·x) = X ^x ×10 ⁻⁸ x - 1.302×1	10 ⁻⁸ = 0		X = 1.141 pH = - Xc	× 10 ⁻⁴ = [g10 (1.141×)	H30 ⁺] 10 ⁻⁴) = 3.94	
				Nhile this nethod is guadriatic equation "bad nath days!" (the most ac can be pro- tr as in	curate solving toblematic of on Exam day	g a 15 ¹¹ .

16.4	Estim pH of	ating the pl a Weak Ac	H of Acid and id – Approx M	l Base Solutions Iethod		
	Calcul (HCIO	late the <mark>pH</mark> , Ka = 3.5x1	of a 0.372 M <mark>0⁻⁸).</mark>	aqueous solution	of hypochlorous a	acid
		HQO	+ H₂O(I	H_{3O}^{\dagger}	+ 00-	
	I	0.312		0	0	
	С	-X		χ	<u> </u>	
	E	0.312 - x	,	X	X	
9ξ [HA] Κα 3 .5	i > 100 Ka 0.37 ihen <u>[H30</u> [×10 ⁻⁸ =	Men :- LHA 2 > 100(3.5× 0.372-× ≈ 0 ⁺][C70 ⁻] HC90] <u>X.X</u> 0.372)X ≈ [HAJ: 10 ⁻⁸) 0.312	x = 10 = 1.11 pH = - log ₁₁	$\frac{312(3.5 \times 10^{-8})}{41 \times 10^{-4}} = [H_{3}0^{+}]$	
	χ ² :	0.312 (3.5)	10.8)	Ofter you have d Inat as long as	lone some of these you [HA]: > 100 Ka	ville notice :-
				X	f √[HA]i Ko	

isoqu	ulate the <mark>pH</mark> (uinoline (C ₉ H	of a 0.372 M aqu ₇ N, Kb = 2.5x10 ⁻	ueous solution ⁹) F	of a) 5 oH = ?.0 b) 6 c) 7	d) 8 (e) 9
	C9 H1N	+ H₂O(I) =	CaH1NH+	+ O#-	
1	O.312		0	0	
С	- X		X	X	
E	0.372 · X		X	x	
mus Ke = <u>(</u>	$C_{qH_{T}NH^{\dagger}}[OH^{-}]$. 31%	: - HO م	3.05 × 10" = LOH'J - log10 (3.05 × 10"5) =	4.52
9	LCaHIN]		4 Ha	00H = 14 @ 25°0	
ל. ג ×10	0.312			pH = 14 - 4.52	
x ²	= 0,312 (2.5×	10-9)		• • 9.48	

16.5 Acid-Base Properties of Salts Hydrolysis – Neutral Cations and Anions

