16.5 Acid-Base Properties of Salts

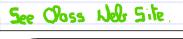
Hydrolysis – Neutral Cations and Anions

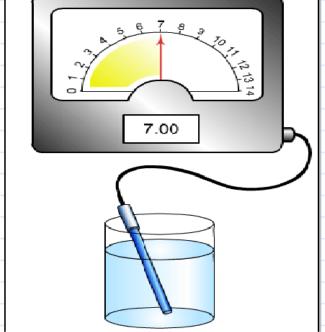
Hydrolysis

Cation

Anion

Na⁺


- CI-
- NH₄⁺
- **F**-
- C₅H₅NH⁺
- O CN-
- NO₂
- O CIO


Concentration

0.01 M

Salt: NaCl

pH = 7.00

NEUTRAL [ATIONS

The 6 cations associated with the six strong bases:

Li*	Y' OH		
No ⁺	NaOH		
K ⁺	Кон		
Ca ²⁺	(OH) ₂		
Bo2+	Ba (0H)2		
Sr21	Sr (0H)2		

Non neutral cations are all potential weak acids ... ie NHut

NEUTRAL ANIONS

The 6 amions associated with the six strong acids

CI.	HCP
Br'	HBr
I.	HI
N03	HNO ₃
504 ²⁻	H250
CrO4	HQO
1	

Non neutral amons are all potential weak bases ie F

16.5 **Acid-Base Properties of Salts Acid-Base Properties of Salts**

An aqueous solution of NaClO is expected to be:

- a) Acidic
- b) Basic c) Neutral

No CO (aq) =
$$\frac{Na^{+}}{I}$$
 + $\frac{CO^{-}}{I}$

New that cation

Non new that amion ... weak lose

 $OO^{-} + H_2O(8) \iff HCO(aq) + OH^{-}$

16.5 **Acid-Base Properties of Salts Acid-Base Properties of Salts**

An aqueous solution of **ammonium nitrite** is expected to be:

$$Ka\ HNO_2 = 4.5 \times 10^{-4}$$

$$Kb NH_3 = 1.8 \times 10^{-5}$$

- a) Acidic 🗸
- b) Basic c) Neutr
 - c) Neutral

$$NH_{\Psi}NO_{2}(qq) = NH_{\Psi}^{*} + NO_{2}^{*}$$

Non Neutral cation ... Neah acid

Non Neutral amion ... Neah lose

$$\frac{NH_4^+ + H_2O(9)}{Consugale} \stackrel{\bullet}{lonsugale} \stackrel{\bullet}{lose}$$

$$K_0 = \frac{1 \times 10^{-10}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

Base [authorite aciq]
$$\frac{100^{3} + 1100(8)}{1100} \iff \frac{1100^{3}}{1100} (ad) + OH_{1}; \quad K^{B} = \frac{1}{3}$$

$$K_B = \frac{1 \times 10^{-14}}{4.5 \times 10^{-4}} = 2.2 \times 10^{-11}$$

Ka for NH4 7 Ke for NO2 NH4 wins home solution acidic

16.5 Acid-Base Properties of Salts Determining pH of a Salt Solution

What is the pH of an 0.432M aqueous solution of NaCN Ka HCN = $4.0x10^{-10}$.

$$Na[N(qq) = Na^+ + \underline{CN}^-$$

	CN- +	H ₂ O(I)	= HCN	+ OH_
ı	0.432		0	0
С	- X		χ	Х
E	O.432-X		χ	X

$$\frac{2.5 \times 10^{-5} - \frac{x \cdot x}{0.432}}{2.5 \times 10^{-5}}$$

$$X = \sqrt{0.432(2.5 \times 10^{-5})}$$

$$= 3.29 \times 10^{-3} = [OH]$$

17.1 Acid-Base Reactions Types of Reactions

Re	action	Example		pH at Eq	Extent
Str	ong acid + strong base	HCI(aq) + NaOH(ad	q) → H ₂ O(ℓ) + NaCl(aq)	7	100%
2 Strong acid + weak base 3 Strong base + weak acid		$HCI(aq) + NH_3(aq) \rightarrow NH_4CI(aq)$ $NaOH(aq) + HCIO(aq) \rightarrow H_2O(\ell) + NaCIO(aq)$		< 7 > 7	100% ~100%
5	A: Stroma Ocid.	SB · Strong Bose	WA: Weak acid	WB: Weak Bose	
	REACTION	SALT PRODUCED		<u>PH</u>	
1	5A + 5B	$N_0\Omega(00) = N_0^{\dagger} + \Omega.$	[ation & Onion Neutral]	7	
2.	SA + WB	NH4 CP (ag) = NH4 + CP	NHy is a weak acidic catio		
			$NH_{4}^{+} + H_{2}O(9) \iff NH_{3}(aq) + 1$	130	
3 1	14 + 5B	No (20 (ag.) = No+ + (20)	CO is a weak basic amin	m. >7	
			C10 + H2D(9) <=> HC10(ag) +	OH-	
4	MA + MB	NH4CO(aq) = NH4 + C80°	NHy is a neak ocidic cat	im]	
	Lied . Lien	initación - initación	NH4+ H20(8) <=> NH3 (ag)		
			CID is a weak bosic am		
			CPO" + H2O(9) (=> HCPO(aq)	1 UN J	
			# pH depends on which K is	Parger, Ka OR KB	

17.1 Acid-Base Reactions

Strong Acid/Strong Base Reactions

$$\frac{?}{HCl(aq) + NaOH(aq) = NaCl(aq) + H_2O(l)}$$

NET IONIC EQUATION:

$$H_30^{\dagger} + OH^{-} = 2 H_2O(9)$$

* Os we wrote H30° on reactant side, had to add H2019) to product side so as to keep the chemical equation balanced.

$$H_{30}^{\dagger} + OH^{*} = 2 H_{20}(9) ; K = \frac{1}{1 \times 10^{-14}}$$

K >>> 1: Very product favored, goes 100%.

Thus = nather than (=>

17.1 Acid-Base Reactions Strong Acid/Weak Base Reactions

$$HCI(aq) + NH3(aq) = NH4CI(aq)$$

NET TONIC EQUATION:

$$HCP(aq_1 + NH_3(aq_1) = NH_4CP(aq_1)$$

 $H_3O^{\dagger} + CP^{-} + NH_3(aq_1) = NH_4^{\dagger} + CP^{-} + H_2O(9)^{*}$
 $H_3O^{\dagger} + NH_3(aq_1) = NH_4^{\dagger} + H_2O(9)$

* See previous slide as to why we had to add H20181 to the product side.

$$H_3O^+ + NH_3(QQ) \iff NH_4^+ + H_2O(Q) : K = \frac{1}{5.6 \times 10^{-10}}$$

= 1.8 × 109

K >>> 1, Very product forohed, essentially 100%

17.1 Acid-Base Reactions Weak Acid/Weak Base

NET IONIC EQUATION:

H (10(aq) + NH3(aq) ←> NH4+ + (10)

HC10(10g) + H2019) <=> H30+ C70	K= 3.5×10-8
$NH_3(aq) + H_2O(9) \iff NH_u^+ + OH^-$	K = 1.8 × 10-5
HORO(ag) + NH2(ag) + 24201) (NH4+00+ H30+0H)	H = 6.3×10-13
H ₃ 0 ⁺ + OH' <=> 2 H ₂ 0(9)	K* = 1.0 × 10 14
HO!O(ag) + MH3(ag) <=> NH4 + C!O"	K = 63

K ≈ 1: Significant quantities of Reactants and products present at equilibrium

Curious about the pH at the equivalence pount?

HydroPsis of NH4000

- 0) NH4+ + H2019) (=> NH3(00) + H30+ Ka= 5.6 × 10-10
- B) 000+ H20(9) (=> H00(cq)+OH + Kg=29x10-7

Κ⊌ > **Κ**• **ρ**Η > 7.