

Dipole - Dipole Vs Induced Dipole - Induced Dipole (London Dispersion Zonces)

11.2 Vapor Pressure

Vapor Pressure of Liquids	Description	
24 (0) × b b b c c c c c c c c c c c c c	flask 1flask 2Image: flask 1Image: flask 2Image: flask 1Image: flask 2Image: flask 1Image: fl	VP = VApor Pressure
a) VP Vs T &) VP Vs Ma c) VP im polar M	slar Mass (non-polar) Iolecules Us VP in nonpolar M	where we have a second se

Vapor Pressure 11.2 **Heat of Vaporization** \rightarrow The armount of heat required to convert a liquid to a gas: ΔH_{VAP}^{o} Which of the following molecules would you expect to have the smallest ΔH^{o}_{vap} a) CH_3OH b) $C_2H6 \checkmark$ c) C_4H_{10} -> Nhy ? Non-polar with a shaller Molor Mass than [4H10, which is also non-polar. [H30H is polar.

	Ĵn P ≠	- <u>AHvap</u> RT	+ C	$\Delta H_{VRP}^{\circ} = H$ R : 8,	eat of Vaporiza 314 J. mo?". K	ation. " (Ideal Sas [on
O) GRAPHICA						
	Plot	JmP Vs		T must le im t		
		Slope = -	R			
R) QUANTITA	TINELY					
2, 000	lo Pa	- <u>AHo</u>	<u>AP</u> + C	: fo Po	AHONAP	- + C
	The vit	RT		· • · · · · · · · · · · · · · · · · · ·	RTa	
	h P.	h R =	<u>AH vap</u>	$+C + \Delta H_{v}^{\circ}$		
	¥" "X		RT ₂	RT		
	Po Po	- (m P. =		<u>ρ ΔΗ°μρ</u>		
	× • ••€		RT.	RTa		
		P. P2 -		P(1 1		
		<u> </u>	R			
		$\int_{n} \frac{P_2}{P_1} =$	<u>AH[°]va</u> R	$\frac{P}{T_1} = \frac{1}{T_2}$		

11.2 Vapor Pressure Clausius-Clapeyron Equation – Graphical Method

Determine enthalpy of vaporization graphically

From the following vener pressure data for boptane			P, mm Hg	T, Kelvin
an es	an estimate of the molar heat of vaporization of $C_{-}H_{+}$ is			315
an estimate of the molar heat of vaporization of 071116 is				351
P. P2	ΔH_{VAP}° (1 1)			
	$=$ $-R$ $(T_1 - T_2)$			
P , :	100 Ti : 315			
P2 =	400 T ₂ : 351			
0 400		139 (8	3117)	
Ju <u>100</u>	$= \frac{3174}{R} \left(\frac{1}{315} - \frac{1}{351} \right)$	ΔH VAP =	(10-4	
$f_{n} + (R) = \Delta H_{NAP}^{o} (3.26 \times 10^{-4})$	R) = ΔΗ SAP (3.26 × 10-4)	= 3.54 %	0 ⁴ J. ma ⁹⁻¹	
	ol ac	R h t m.0-1		
			+ IA J. 11101	

13.1	Quantitative Expressions of Units of Concentration – Mo	Concentration Iarity, Molality, Mole Fraction, Weight %			
	Solution = Jorure + Jorvenr —> that which is present in the greatest amount.				
Molarity:	Mole Fraction:				
L→ Ih	ne only one you net in Chem 111				
M =	= Moles of solute Volume of the solution im L	X = moles of solute moles of solute + moles of solvent			
Дяаы	BACK: Ne know Nothing quantity wise about the solvent.				
Molality:		Weight %:			
m	= moles of solute moss of solvent (Rg)	$Mt \% of A = \left(\frac{mass of A}{mass of A + mass B + \dots}\right) 100$			
DRAWE	BACK: Ne know mothing quantity Nise about the solution.				