
13.4 Colligative Properties Vapor Pressure Lowering – Boiling Point Elevation

Vapor Pressure Lowering - Freezing Point Depression

17th Chambe in treesing boint

Kfp: Breezing point depression constant for the solute.

modute: Modality of the solute.

: van·t Hoff Zactor. Zor a nonelectrolyte, i = 1.

Vapor Pressure Lowering – van't Hoff Factor?

Im our disscussion of Rapults Law we have stuck with mon volatile liquids (nonelectrolytes) that dissolve in water.

What if we used soluble ionic compounds?

1M No
$$O(q)$$
 = 1M Na⁺ + 1M O ⁻ : $i = 2$

1M CaQ2(aq) = 1M
$$lo^{2+} + 2M cQ^{-}$$
 : $l = 3$

What about using a weak acid?

Vapor Pressure Lowering – van't Hoff Factor?

By a same

Which of the following solutions would have the highest boiling point?

$$NH_4^+ + NO_3^-$$
; $c = 2$

0.44m Glucose (nonelectrolyte)

1 × 0.44 = 0.44 /

Vapor Pressure Lowering – van't Hoff Factor?

Which of the following solutions would have the lowest freezing point?

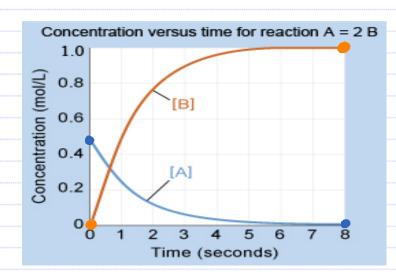
a)

$$C_{u}^{2+} + 2I^{-} = i = 3$$

b) **√**

c)

d)


0.47m Urea (nonelectrolyte)

: 6=1

1 x 0,47: 0.47

14.2 Expressing the Rate of a Reaction

Average Rate and Reaction Stoichiometry

Rate =
$$\frac{\Delta(B)}{\Delta t}$$
 = $\frac{[B]_8 - [B]_0}{t_8 - t_0}$ = Rate of Formation of B

Rate =
$$\frac{\Delta(A)}{\Delta t}$$
 = $\frac{[A]_8 \cdot [A_0]}{t_8 \cdot t_0}$ = Rate of Dissoperance of A

FOR B:

No supprise A = 2B, that the average rate of Bornation of B is twice the average rate of Dissapearance of A

FOR A:

14.2 Expressing the Rate of a Reaction

Average Rate and Reaction Stoichiometry

$$A = 2B$$

Overage Rate of Reaction =
$$\frac{1}{2} \frac{\Delta[B]}{\Delta t} = -\frac{1}{1} \frac{\Delta[A]}{\Delta t}$$

= $\frac{1}{2} \frac{\Delta[B]}{\Delta t} = -\frac{1}{1} \frac{\Delta[A]}{\Delta t}$
= $\frac{1}{2} \frac{\Delta[B]}{\Delta t} = -\frac{1}{1} \frac{\Delta[A]}{\Delta t}$
= $\frac{1}{2} \frac{\Delta[B]}{\Delta t} = -\frac{1}{1} \frac{\Delta[A]}{\Delta t}$

* See previous slide to see where these numbers come from

Overage Role of Reaction =
$$-\frac{1}{a} \frac{\Delta(A)}{\Delta t} = -\frac{1}{b} \frac{\Delta(B)}{\Delta t} = \frac{1}{c} \frac{\Delta(C)}{\Delta t} = \frac{1}{d} \frac{\Delta(D)}{\Delta t}$$