15.2 The Equilibrium Constant, K

The Relationship between K_{p} and K_{c}

$$
\begin{aligned}
& 2 N O B r(g) \Leftrightarrow 2 N O(g)+B_{r_{2}}(g) \\
K_{c}= & \frac{[N O]^{2}\left[B_{2}\right]}{\left[N O B_{r}\right]^{2}}: \quad K_{p}=\frac{P_{N_{0}}^{2} P_{B_{2}}}{P_{N_{O B}}^{2}}
\end{aligned}
$$

How are K_{c} and K_{p} related?

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{(n / v) R T}{\rightarrow} \text { mol. } \ell^{-1}=[] R T \\
& K_{P}=\frac{P_{\text {No }}^{2} P_{B r 2}}{P^{2}{ }_{\text {NOB }}} \\
& =\frac{[N O]^{2}(R T)^{2}\left[B_{r}\right](R T)}{\left[N O B_{r}\right]^{2}(R T)^{2}} \\
& =\frac{[N O]^{2}\left[B_{2}\right]}{[N O B r]^{2}} \times \frac{(R T)^{3}}{(R T)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
K_{p} & =K_{c}(R T)^{3}(R T)^{-2} \\
& =K_{c}(R T)^{3-2}
\end{aligned}
$$

3-2 = mol gas products -mod gas Reactants $2 \mathrm{NO}(\mathrm{g})$: $\begin{gathered}\text { Bragg) } \\ 3-2\end{gathered} 2^{2 \mathrm{NOBr}}$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$\Delta n=$ mol of gas products - mol of gas reactants
15.2 The Equilibrium Constant, K

The Relationship between K_{p} and K_{c}

The equilibrium constant, Kc , for the following reaction is 2.90×10^{-2} at 1260 K . Calculate Kp for this reaction at this temperature.

$$
\begin{aligned}
& 2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}
\end{aligned}
$$

a) 1

$$
\begin{aligned}
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \Delta n=2+1=2=1
\end{aligned}
$$

$$
\begin{aligned}
K_{p} & =2.90 \times 10^{-2} *(0.0821 \times 1260) \\
& =2.99
\end{aligned}
$$

15.2 The Equilibrium Constant, K

Manipulating Equilibrium Constant Expressions
a) Multiply by a constant
b) Reverse the Reaction.
c) [ombuning Reactions.
a) Multiple by a constant.

$$
\begin{gathered}
\text { 1. } \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{V}_{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g}) \\
22 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
K_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2} \quad K_{2}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}} \\
R_{x N} 2=2 * R_{x N 1} .
\end{gathered}
$$

$$
K_{2}=K_{1}^{2}
$$

b) Reverse the reaction.

$$
\begin{aligned}
& \text { 1. } 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
& \text { 2. } 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& K_{1}=\frac{\left[\mathrm{SO}_{2}\right]^{2}[\mathrm{~g})}{\left.\left[\mathrm{SO}_{3}\right]\right]^{2}} \quad K_{2}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

$R_{X N} 2=-1 \times R_{X N} 1$.

$$
k_{2}=k_{1}^{-1}
$$

c) Combining reactions.

$$
\begin{aligned}
& \text { 1 }\left[(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})\right. \Leftrightarrow[\mathrm{O}(\mathrm{~g}) \\
& \text { 2. } \frac{\left[(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})\right.}{} \Leftrightarrow \frac{[\mathrm{g}(\mathrm{~g})}{2[\mathrm{~g})} \\
& \text { 3. } 2\left[(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})\right. \Leftrightarrow \frac{[\mathrm{g})}{\left[\mathrm{O}_{2}\right]^{1 / 2}} \quad \mathrm{~K}_{2}=\frac{[\mathrm{[O}]}{\left[\mathrm{O}_{2}\right]^{1 / 2}} \quad K_{3}=\frac{\left[[\mathrm{O}]^{2}\right.}{\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

$$
R_{\times N} \text { 3. }=R_{x N 1 .}+R_{x N} 2
$$

$$
K_{3}=K_{1} \times K_{2}
$$

15.2 The Equilibrium Constant, K

Manipulating Equilibrium Constant Expressions

The equilibrium constant, Kc , for the following reaction is 0.25 at 500 K

$$
2 \mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

a) 1

Calculate Kc at this temperature for:

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{5}
$$

[cOMPare: $\quad \mathrm{PO}_{3}(g)+Q_{2}(g) \Leftrightarrow P P_{3}(g)$

$$
\text { To: } \quad \quad 2 \mathrm{PO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{PO}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

The reaction of interest is:-
a) Reversed
b) Multiplied by $\%$

$$
\begin{aligned}
K_{c} & =(0.25)^{-1 \times 1 / 2} \\
& =(0.25)^{-1 / 2} \\
& =\frac{1}{\sqrt{0.25}} \\
& =2
\end{aligned}
$$

15.4 Disturbing a Chemical Equilibrium: Le Chatelier's Principle Addition or Removal of a Reactant or Product

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

15.4 Disturbing a Chemical Equilibrium: Le Chatelier's Principle

Addition of a Reactant.

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

addition of a Reactant causes $Q \downarrow$, thus now $\xrightarrow{Q<K}$ Shift towards Products until again $Q=K$
15.4 Disturbing a Chemical Equilibrium: Le Chatelier's Principle Removing an Reactant.

Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy

Water tank cartoon correctly predicts that the Removal of a Reactant at Equilibrium causes a ship towards Reactants... chemically why is this prediction corned.

$$
\left.Q=\frac{\left[P_{\text {roducts }}\right]}{[\text { REActaNTS }]}\right\} @ \text { Equilibrium, } Q=K
$$

Removal of a Reactant causes QT, Hus now $Q>K$

15.4 Disturbing a Chemical Equilibrium: Le Chatelier's Principle

 Adding a Product.```
Chemistry Interactive: LeChatelier's Principle - The Water Tank Analogy
```


addition of Product causes $Q \uparrow$ $Q>K$ Shift towards Reactants until $Q=K$ ogain

