2 NOBr(g) <=> 2 NO(g) + Br2(g)							
$K_{c} = \frac{[NO]^{2}[Br_{2}]}{[NOBr]^{2}} : K_{p} = \frac{P_{NO}^{2}P_{Br_{2}}}{P_{NOBr}^{2}}$							
How are Kc and Kp related?							
$PV = nAT$ $P : (n/v) RT$ $L_{2} moll. 1'' = []RT$ $K_{p} = \frac{P_{NO}^{2} P_{Br_{2}}}{P^{2}_{NOBr}}$ $= \frac{[NO]^{2} (RT)^{2} [Br_{2}] (RT)}{[NOBr]^{2} (RT)^{2}}$	Kp = Kc (RT) ³ (RT) ⁻² = Kc (RT) ³⁻² 3-2 = mol gos products - mol gos reactorit 2 NO(g) & Braig) 2 NOBr 3 - 2						
$= \frac{[N0]^{2} [Gr_{2}]}{[N0Gr]^{2}} \times \frac{(RT)^{3}}{(RT)^{2}}$	Kp = Kc(RT) ^{An} An = mol of gas products - mol of gas reactants						

o) Multiply by a constant b) Reverse the reaction c) Combuning reactions						
a) Multiple by a constant. 1. 502(g) + ½02(g) <=> 503(g) 2. 2502(g) + 02(g) <=> 2503(g)	Rxn 2. = -1 x Rxn 1.					
$K_{1} = \frac{[50_{3}]}{[50_{2}][0_{2}]^{1/2}} \qquad K_{2} = \frac{[50_{3}]^{2}}{[50_{2}]^{2}[0_{2}]}$	$K_{2} = K_{1}^{-1}$					
Rxn 2 = 2 × Rxn 1	c) Combining reactions. I $[(s) + \frac{1}{2}O_2(g) \iff [O(g)]$ 2 $\underline{[(s) + \frac{1}{2}O_2(g)} \iff [O(g)]$					
$K_{2} = K_{1}^{2}$ b) Reverse the reaction.	3. $2(s) + O_2(g) \iff 2[O(g)]$ $K_1 \div \frac{[CO]}{[O_2]^{\frac{1}{2}}}$ $K_2 \div \frac{[CO]}{[O_2]^{\frac{1}{2}}}$ $K_3 \div \frac{[[O]^2}{[O_2]}$					
1. $2 50_{3}(g) \iff 2 50_{2}(g) + O_{2}(g)$ 2. $2 50_{2}(g) + O_{3}(g) \iff 2 50_{3}(g)$	Rxn 3. = Rxn 1. + Rxn 2.					
$K_{1} = \frac{\left(50_{2}\right)^{2}\left(0_{2}\right)}{\left(50_{3}\right)^{2}} \qquad K_{2} = \frac{\left(50_{3}\right)^{2}}{\left(50_{2}\right)^{2}\left(0_{2}\right)}$	$K_3 = K_1 \times K_2$					

The equilibrium constant, Kc, for the following reaction is 0.25 at 500K $2 PCL (a) \Leftrightarrow 2 PCL (a) \pm 2 CL (a)$								
$2 \operatorname{PCl}_{5}(g) \Leftrightarrow 2 \operatorname{PCl}_{3}(g) + 2 \operatorname{Cl}_{2}(g)$								
Calculate Kc at this tempera	Calculate Kc at this temperature for: $PCI_{c}(q) + CI_{c}(q) \Leftrightarrow PCI_{c}$ Kc = ?.0 Kc = ?.0							d) 4
	PC	l ₃ (g) + C	l ₂ (g) ⇔	PCI ₅		9-0		e) 3
Impore :	PC	() () () () () () () () () () () () () (92197 <=	> PCP+	, (0)			
Compare : To :		28	Us (ŋ <=	72P	تا <u>ع(ع)</u> +	20	12 Lg)	
The reaction of i	integost	t is :-						
JILE Reaction of E	DITIENES	o) 1	Reversed					
		B)	Mustipsted	By 1/2				
M	K. =	(0.25) (0.25)	1 × 1/2					
	:	(0.25)	- 12					
	3	1						
	:	2						

