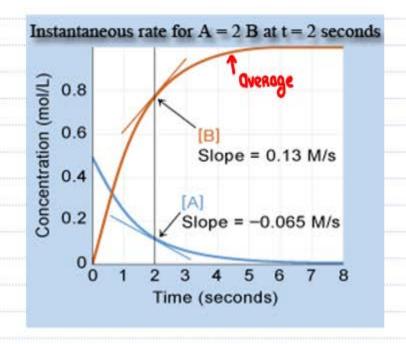
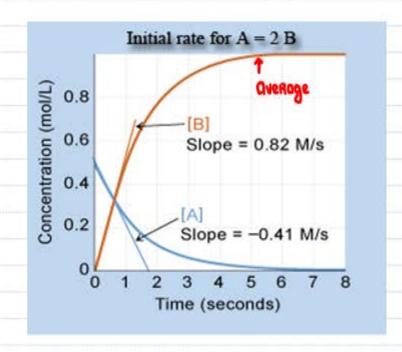
Announcements - Lecture VII - Tuesday, Feb 13th

1. Exam 1: Saturday, February 24th, ISB 155/160 (General Chemistry Labs)

Session I: 1:00-2:55, Last Name, A-J

Session II: 3:00-4:55, Last Name, K-Z


2. Quiz 2: Place in basket.


iClicker:

Pick any letter a-e

14.2 Expressing the Rate of a Reaction Instantaneous and Initial Rates

Anitial rates are where the rate of Formation and the rate of Dissopearance is line.

Thus this is our region of choice.

14.3 Rate Laws

Concentration and Reaction Rate

It should come as no surprise that the rate of Jornation or Dissapearance is directly proportional to the concentration.

$$aA + BB = cC + dD$$

Initial Reaction Rate = k[A] [B]

x: is referred to as the order with respect to A.

y: is Referred to as the order with respect to B.

X+y: is the overall order of the reaction.

R: is the rate constant.

NOTE: x and y are not necessarily equal to a and b. x and y can only be determined experimentally.

NOTE: Our discussion will unitially be confuned to orders: 0,1 and 2.

Rote = k[A]° FOR A: Zeno onder : Rate = REAJ' Jirst order :

> Rate = R[A]2 Second order :

14.3 Rate Laws

Determining Rate Law Using the Method of Initial Rates

$$NO + O_3 = NO_2 + O_2$$

- a) What is the rate law?
- b) What is the rate constant?

Exp	[NO] _o , M	$[O_3]_o$, M	Initial Rate, Ms ⁻¹
1	0.139	0.0436	0.527
2	0.139	0.0872	1.05
3	0.278	0.0436	1.05
4	0.278	0.0872	2.11

Exp | Role, =
$$R[NO]_{1}^{x}[O_{3}]_{1}^{y}$$

 $0.527 = R(0.139)^{x}(0.0436)^{y}$
Exp 2. Role, = $R[NO]_{1}^{x}[O_{3}]_{2}^{y}$
 $1.05 = R(0.139)^{x}(0.0872)^{y}$
Role, $0.527 = R(0.139)^{x}(0.0872)^{y}$
 $1.99 = 2^{y}$
 $y = 1$

Exp 1.
$$0.527 = k(0.139)^{x}(0.0436)^{3}$$

Exp 3 $R_{0}l_{0.3} = k[N0]_{3}^{x}[0_{3}]_{3}^{3}$

1.05 = $k(0.218)^{x}(0.0436)^{3}$
 $R_{0}l_{0.3} = \frac{k(0.218)^{x}(0.0436)^{3}}{R_{0}l_{0.3}}$

1.95 = $\frac{k(0.218)^{x}(0.0436)^{3}}{R(0.139)^{x}(0.0436)^{3}}$

1.99 = 2^{x} : $x = 1$

Rote = $k[N0][0_{3}]$

Exp 1 : $0.527 = k(0.139)(0.0436)$
 $k = 86.9 M^{-1}s^{-1}$

14.3 Rate Laws

Determining Rate Law Using the Method of Initial Rates

a) What is the overall order of the reaction

Ехр	[ICI] _o , M	[H ₂] _o , M	Initial Rate, Ms ⁻¹
1	0.309	0.114	7.07e-3
2	0.618	0.114	1.41e-2
3	0.309	0.228	2.83e-2
4	0.618	0.228	5.65e-2

Previously we did this the long way

Thate =

This time we will do it the short way $\frac{1}{k}$ [H₂]²

Exp 1 & 3: [ICP] is held constant while [H2] increases by a factor of 2.

$$\frac{2.83 \times 10^{-2}}{7.07 \times 10^{-3}} = 4.00$$

$$\frac{1.41 \times 10^{-2}}{7.07 \times 10^{-3}} = 1.99$$

14.4 Concentration Changes over Time Integrated Rate Laws

Integrated Rate Laws for Reactions of Type A → Products

t: time

Reaction Order	Rate Law	Integrated Rate Law
Zero order	$rate = \kappa [A]^0 = \kappa$	$[A]_t = [A]_0 - kt$
First order	* rate = k[A]	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$

[A]o: Initial concentration of A @ time = 0

Second order rate =
$$k[A]^2$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$

[A]t: Concentration of A @ time = t

A = PROducts

$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

$$\frac{d[A]}{dt} = -k[A] ... If \(\Delta \) is very small.

(\(\frac{1}{2}(A) \)) d[A] = -kdt$$

$$\int_{t=0}^{t=t} (\frac{1}{LAJ}) d[A] = -h \int_{t=0}^{t=0} dt$$

$$\int_{t=0}^{t=0} [A]_{t} - \int_{t=0}^{t=0} [A]_{0} = -ht$$

$$\int_{t=0}^{t=0} \frac{[A]_{t}}{[A]_{0}} = -ht$$

14.4 **Concentration Changes over Time** Integrated Rate Laws

The decomposition of nitrous oxide

$$N_2O(g) = N_2(g) + \frac{1}{2}O_2(g)$$

is second order in N₂O with a rate constant of 1.20x10⁻³ M⁻¹s⁻¹.

If the initial concentration of N₂O is 1.79 M, the concentration of N₂O will be 0.187 M after how many seconds. ~?,000s

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$$

$$[A]_0 = 1.79M$$

$$[A]_t = 0.187M$$

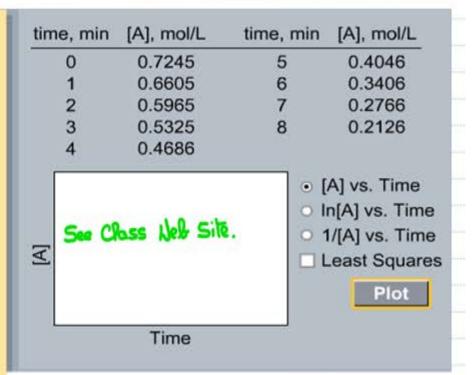
$$k = 1.20 \times 10^{-3} \text{ M.s}^{-1}$$

$$\frac{1}{0.187} = \frac{1}{1.79} + 1.20 \times 10^{-3} t$$

14.4 Concentration Changes over Time

Graphical Determination of Reaction Order

Determining the Rate Equation: Graphical Method


Description

The rate law for reactions involving a single reactant can be determined using the graphical method. This method involves constructing a series of plots of concentration vs. time data and analyzing the plots to extract the reaction order and the rate constant.

The general reaction used for this tutor is:

$$A \longrightarrow C$$

The concentration vs. time data at right were collected by running the reaction at a constant temperature. These are data taken for a single trial of the reaction.

Submit