16.1 Introduction to Acids and Bases

Acid and Base Definitions

ARRHENIUS:
Acid :- A substance containing hydrogen that, when dissolved in water, increases the concentration of H^{+}ions.

Bask :- A substance containing the hydroxide group that, when dissolved in water, increases the concentration of OH° ions.

Bronsted. Lowry:
Acis:- A substance that can donate a proton (\mathbb{H}^{+}ion).
Base :- A substance that can accept o proton.
As the Bronsted-Lowry definition is more infusive this is the definition that we wild focus on. Jor example NH_{3} is a base, which nould mot be obvious under the Orrienius definition.

$$
\mathrm{NH}_{3}\left(\mathrm{aq}_{2}\right)+\mathrm{H}_{2} \mathrm{O}(\Omega) \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Proton acceptor.
Base
OH ion concentration vnerease, thus it now obviously fits the Oarhemius' definition
16.1 Introduction to Acids and Bases Simple Bronsted-Lowry Acids and Bases

$$
\mathrm{HF}(\text { aq })+\mathrm{NH}_{3}(\text { aq }) \Leftrightarrow \mathrm{F}^{-}+\mathrm{NH}_{4}^{+}
$$

Forward Reaction:-

Reverse Reaction:-

16.1 Introduction to Acids and Bases Conjugate Acid-Base pairs

[o njugate acid-lase pair.
Conjugate base-acid pair.

$H F / F^{-}$
Conjugate acid-lose pair.

$$
\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}
$$

[onsucate acid-lase pair.
16.2 Water and the pH Scale Autoionization of Water

Chemistry Interactive: Autoionization of Water
See Class Web Site

$\stackrel{I I}{ }$

$$
\mathrm{H}_{2} \mathrm{O}(9)+\mathrm{H}_{2} \mathrm{O}(9) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

$$
K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
\begin{array}{r}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{4}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{1 \times 10^{-14}}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-1}} \\
{\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}}
\end{array}
$$

16.2 Water and the pH Scale Autoionization of Water
The autoionization of water is an endothermic process.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
Thus as the temperature increases then - the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$should -
a) Decrease
b) Increase \downarrow
c) Remain the same

16.2 Water and the pH Scale Autoionization of Water

With the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increasing with increasing temperature this must mean that as the temperature of water increases the water -
a) becomes acidic
b) becomes basic
c) remain neutral \downarrow

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(9)+\mathrm{H}_{2} \mathrm{O}(9)+{ }^{\circ} \text { heot' } \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{\circ} \\
& \text { Yes the }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \uparrow \\
& \text { But so does the [} \mathrm{OH}^{\prime} \text {] } \\
& \text { Thus [} \mathrm{H}_{3} \mathrm{O}^{\circ} \text {] stixe equals [} \mathrm{OH}^{-} \text {] }
\end{aligned}
$$

Some Kiw Values

$$
\begin{array}{r:l}
0^{\circ} \mathrm{C} & 1.4 \times 10^{-15} \\
25^{\circ} \mathrm{C} & : 10 \times 10^{-14} \\
90^{\circ} \mathrm{C} & : 5.57 \times 10^{-13}
\end{array}
$$

16.2 Water and the pH Scale

Autoionization of Water - Neutral/Acidic/Basic Solutions

Cel at $25^{\circ} \mathrm{C}: \quad K_{w}=1 \times 10^{-14}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{*}\right]=[\mathrm{OH}]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7}} \\
& {\left[\mathrm{OH}^{-7}\right]=1 \times 10^{-7}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-3}} \\
& {\left[\mathrm{OH}^{-}\right]=1 \times 10^{-11}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-11}} \\
& {\left[\mathrm{OH}^{-}\right]=1 \times 10^{-3}}
\end{aligned}
$$

16.2 Water and the pH Scale Autoionization of Water - Neutral/Acidic/Basic Solutions

A solution at $25^{\circ} \mathrm{C}$ has a hydronium ion concentration of $4.5 \times 10^{-4} \mathrm{M}$. This solution is:
a) Acidic
b) Basic
c) Neutral

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =4.5 \times 10^{-4} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{+}\right] } & =1 \times 10^{-14} @ 25^{\circ} \mathrm{C} \\
4.5 \times 10^{-4}\left[\mathrm{OH}^{-}\right] & =1 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{1 \times 10^{-14}}{4.5 \times 10^{-4}} \\
& =2.2 \times 10^{-11} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & >\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

16.2 Water and the pH Scale pH and pOH Calculations

$$
\begin{aligned}
& I m_{m} \text { general : } p X=-\log _{10} X \\
& p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right] \quad p O H=-\log _{10}\left[\mathrm{OH}^{\prime}\right]
\end{aligned}
$$

@ $25^{\circ} \mathrm{C}$

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=1 \times 10^{-14}} \\
\log _{10}\left(\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right]\left[\mathrm{OH}^{-}\right]\right)=\log _{10}\left(1 \times 10^{-14}\right) \\
\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log _{10}\left[\mathrm{OH}^{\circ}\right]=-14 \\
\frac{\mathrm{PH}}{\mathrm{l} \mathrm{og}_{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log _{10}\left[\mathrm{OH}^{-}\right]} \mathrm{pOH}=14
\end{gathered}
$$

$$
\mathrm{PH}+\mathrm{POH}=14 @ 25^{\circ} \mathrm{C}
$$

Acid Ionization

See CPoss Nele Site

Acid:

- $\mathrm{H}_{3} \mathrm{PO}_{4}$
- $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
- $\mathrm{H}_{2} \mathrm{CO}_{3}$
$-\mathrm{HCl}$
- HNO_{3}
- HClO_{1}

Ionize

6 Strong Acing:

HCl	HNO_{3}
HBr	$\mathrm{H}_{2} \mathrm{SO}_{4}$
HI	HClO_{4}

6 Strong Basfes:

LOH	$\mathrm{Ca}(\mathrm{OH})_{2}$
NaOH	$\mathrm{Ba}(\mathrm{OH})_{2}$
KOH	$\mathrm{Sr}(\mathrm{OH})_{2}$

Ionized acid is indicated by red in the above diagram

