

16.3 Acid and Base Strength Acid and Base Hydrolysis Equilibria, Ka, and Kb

Ka	Values		K _a V	alues	
Name of Acid	Acid	Ka	Name of Acid	Acid	Ka
Sulfuric acid Hydrochloric acid Nitric acid Hydronium ion Hydrogen sulfate ion Phosphoric acid	H ₂ SO ₄ HC1 HNO ₃ H ₃ O ⁺ HSO ₄ ⁻ H ₃ PO ₄	large large 1.0 1.2 × 10 ⁻² 7.5 × 10 ⁻³	Hexaaquaaluminum ion Carbonic acid Hydrogen sulfide Dihydrogen phosphate ion Hypochlorous acid Ammonium ion	A1(H ₂ O) ₆ ³⁺ H ₂ CO ₃ H ₂ S H ₂ PO ₄ ⁻ HC1O NH ₄ ⁺	7.9 × 10 ⁻⁶ 4.2 × 10 ⁻⁷ 1 × 10 ⁻⁷ 6.2 × 10 ⁻⁸ 3.5 × 10 ⁻⁸ 5.6 × 10 ⁻¹⁰
Hexaaquairon(III) ion Hydrofluoric acid Formic acid Benzoic acid Acetic acid	Fe(H ₂ O) ₆ 3+ HF HCO ₂ H C ₆ H ₅ CO ₂ H CH ₃ CO ₂ H	6.3 × 10 ⁻³ 7.4 × 10 ⁻⁴ 1.8 × 10 ⁻⁴ 6.3 × 10 ⁻⁵ 1.8 × 10 ⁻⁵	Hydrocyanic acid Hexaaquairon(II) ion Hydrogen carbonate ion Hydrogen phosphate ion Water Hydrogen sulfide ion	HCN Fe(H ₂ O) ₆ ²⁺ HCO ₃ ⁻ HPO4 ²⁻ H ₂ O HS ⁻	4.0×10^{-10} 3.2×10^{-10} 4.8×10^{-11} 3.6×10^{-13} 1.0×10^{-14} 1×10^{-19}

The larger the Ko, the stronger the acid.

	the pH of an aq	ueous solutio	on of 1.15x10 ⁻²	M hydrobromic acid	?
	HBr +	H ₂ O(I) =	H₃O⁺	+ <u>B</u> ,	
I	1.15 × 10 ⁻²		Ö	0	
С	- 1.15 × 10-2		1.15×10-2	1.15×10-2	
E	0		1.15 × 10-2	1.15 × 10-2	
	<u> </u>	Change in co Lquisibriun co	oncentrations		
	EH30 ¹] = 1.15×10	2 ⁻²		
		$pH = -log_{10}$	(1.15×10 ⁻²) I 94		
		~			

$\frac{N_{0}OH}{I} + \frac{H_{0}OH}{I} = \frac{N_{0}^{+}}{O} + \frac{OH^{-}}{O}$ $\frac{I}{I} + \frac{I}{I} $		s the <mark>pH</mark> of ar) ⁻⁵ M sodium h			ution		= ?.0	a) 5 b) 6 c) 7	d) 8 e) 9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Na OH	+		=	Na ⁺	+	OH-		
E O 1.0×10^{-5} 1.0×10^{-5} No OH : Strong base $\rightarrow 100\%$ [OH-] = 1.0×10^{-5}	I	10×10-5				0		0		
No OH : Strong base $\rightarrow 100\%$ [OH-] = 1.0×10^{-5}	С	- 1.0×10-5				1.0×10-5		1.0 × 10-	5	
No OH : Strong base $\rightarrow 100\%$ [OH-] = 1.0×10^{-5}	E	0				1.0×10-5		1.0×10	-5	
] = 1,0×1 = - % = 5	<mark>ہ -2</mark> (۱.03	(10 ⁻⁵)				
pH + pOH = 14 @ 25°C pH + 5 = 14 ρH = 9			<mark>рН</mark> РН	+ pOH = 1 + 5 = oH =	14 @ 14 9	25°C				

Calculate the pH of a 0.372 (HCIO, Ka = 3.5×10^{-8}).	M aqueous solution o	f hypochlorous acid	
HƠD + H₂O	(I) = $H_{3}O^{+}$	+ 00-	
<u>רס. 31 ס. 1</u>	0	0	
C -x	X	X	
E 0.312-X	X	χ	
$3.5 \times 10^{-8} = \frac{(\chi)(\chi)}{(0.372 \cdot \chi)}$ $3.5 \times 10^{-8} (0.372 \cdot \chi) = \chi^{2}$	X = 1,141×10 ⁻⁴	Hakes no chemical so	ition anse
$x^{2} + 3.5 \times 10^{-8} x - 1.302 \times 10^{-8} = 0$	pH = - 200	10 ⁻⁴ = [H ₃ 0 ⁺] 310 (1.141×10 ⁻⁴) = 3.94	
	While this nethod is the guadriatic equation "Bad noth days!" "	he most accurate, solving a can be problematic on as in on Exam days !!	

(HCIO, Ka = 3.5×10^{-8}).		hypochlorous acid
HOO + H2O(I)	= H ₃ O ⁺ -	► 000 ⁻
I 0.312	0	0
<u> </u>	X	<u>x</u>
E 0.312 - X	X	X
then 0.372-x \approx 0.312 $K_{\alpha} = \frac{[H_{3}0^{+}][(270^{-}]]}{[H(270)]}$ $3.5 \times 10^{-8} = \frac{x.x}{0.312}$	pH : - log ₁₀ (1	141 × 10 ⁻⁴) = 3.94
$\chi^2 = 0.312 (3.5 \times 10^{-8})$	After you have done That as Rong as [H	some of these you will not IA]; > 100 Ka
	Jhat os Rong as [H	some of these yo IA]; > 100 Ka ([HA]; Ka

	culate the pH of juinoline (C ₉ H ₇ I					d) 8 e)9		
	[9 H1N	+	H ₂ O(I) =	CaH1NH*	+ OH_			
	0.312			0	0			
C	- x.			X	X			
E	0.372 · X			x	x			
Thus 0.312-X \approx 0.312 Kg = $\frac{[(2qH_1NH^+)](OH^-)}{[(2qH_1N)]}$				$= 3.05 \times 10^{-5} = [04]$ $POH = -\log_{10}(3.05 \times 10^{-5}) = 4.52$				
$2.5 \times 10^{-9} = \frac{X X}{0.312}$				pH + pOH = 14 @ 25°c pH = 14 - 4.52 = 9.48				
x ² = 0,312 (2.5×10 ⁻⁹)			· = 9.48					

16.5 Acid-Base Properties of Salts Hydrolysis – Neutral Cations and Anions

