16.3 Acid and Base Strength Acid and Base Hydrolysis Equilibria, Ka, and Kb

Weak Acids:

$$
\begin{gathered}
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(9) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+A^{+} \\
\mathrm{K}_{0}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Weak Bases:

$$
\begin{gathered}
\mathrm{B}(\mathrm{qq})+\mathrm{H}_{2} \mathrm{O}(9) \Leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{8}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{gathered}
$$

16.3 Acid and Base Strength

Acid and Base Hydrolysis Equilibria, Ka, and Kb

The larger the Ko, the stronger the acid.
16.3 Acid and Base Strength

Relationship Between Ka and Kb - Conjugate Acid-Base Pair

Kobe = Kw for a conjugate acid-base pair.

* An anion acting as a base?

We will address this in more detail shortly.
16.4 Estimating the pH of Acid and Base Solutions Strong Acid and Strong Base Solutions

What is the pH of an aqueous solution of $1.15 \times 10^{-2} \mathrm{M}$ hydrobromic acid?

HBr : Strong acid... 100%
I: Initial concentrations
[: Change in concentrations
E: Equilibrium concentrations

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{4}\right] } & =1.15 \times 10^{-2} \\
\mathrm{pH} & =-\log _{10}\left(1.15 \times 10^{-2}\right) \\
& =1.94
\end{aligned}
$$

16.4 Estimating the pH of Acid and Base Solutions Strong Acid and Strong Base Solutions

What is the pH of an aqueous solution of $1.0 \times 10^{-5} \mathrm{M}$ sodium hydroxide?
a) 5
d) 8
b) 6
e) 9
c) 7
$\mathrm{pH}=? .0$

$\mathrm{NoOH}:$ Strong base $\rightarrow 100 \%$

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =1.0 \times 10^{-5} \\
\mathrm{pOH} & =-\log _{10}\left(1.0 \times 10^{-5}\right) \\
& =5 \\
\mathrm{pH}+\mathrm{pOH} & =14 @ 25^{\circ} \mathrm{C} \\
\mathrm{PH} & +5=14 \\
\mathrm{pH} & =9
\end{aligned}
$$

16.4 Estimating the pH of Acid and Base Solutions pH of a Weak Acid - Quadratic Equation
Calculate the pH of a 0.372 M aqueous solution of hypochlorous acid ($\mathrm{HClO}, \mathrm{Ka}=3.5 \times 10^{-8}$).

	$\mathrm{HOO}+$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$=\quad \mathrm{H}_{3} \mathrm{O}^{+}$	$+Q 0^{\circ}$
1	0.372		0	0
C	-x		x	x
E	$0.372-x$		x	x

$$
\begin{aligned}
& K_{a}=\frac{\left[H_{3} 0^{0}\right]\left[900^{-}\right]}{[H C O O]} \\
& 3.5 \times 10^{-8}=\frac{(x)(x)}{10.372 \cdot x)} \\
& 3.5 \times 10^{-8}(0.372 \cdot x)=x^{2} \\
& \quad x^{2}+3.5 \times 10^{-8} x-1.302 \times 10^{-8}=0
\end{aligned}
$$

$$
\begin{gathered}
\left.x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right\} \begin{array}{l}
a=1 \\
b=3.58 \times 10^{-8} \\
c=-1.302 \times 10^{-8}
\end{array} \\
x=1.141 \times 10^{-4}, \frac{-1.141 \times 10^{-4}}{4 \text { Diskegard as this solution }} \begin{array}{l}
\text { Makes No chemical sense! }
\end{array} \\
x=1.141 \times 10^{-4} \equiv\left[H_{3} 0^{+}\right] \\
p H=-\log _{10}\left(1.141 \times 10^{-4}\right)=3.94
\end{gathered}
$$

While this nethod is the most accurate, solving a quadriatic equation can le probbermatic on "Bad noth days!" "I... as in on Exoom doys!!
16.4 Estimating the pH of Acid and Base Solutions
pH of a Weak Acid - Approx Method
Calculate the pH of a 0.372 M aqueous solution of hypochlorous acid ($\mathrm{HCIO}, \mathrm{Ka}=3.5 \times 10^{-8}$).

If $[H A]_{i}>100 \mathrm{Ko}$ then:- $[H A]_{i}-x \approx[H A]_{i}$
$0.372>100\left(3.5 \times 10^{-8}\right)$
then $0.372-x \approx 0.372$

$$
\begin{aligned}
K_{a} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO} \mathrm{O}^{\circ}\right]}{[\mathrm{HClO}]} \\
3.5 \times 10^{-8} & =\frac{x . x}{0.372} \\
x^{2} & =0.372\left(3.5 \times 10^{-8}\right)
\end{aligned}
$$

$$
\begin{aligned}
x & =\sqrt{0.372\left(3.5 \times 10^{.8}\right)} \\
& =1.141 \times 10^{-4}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

$$
p H=-\log _{10}\left(1.141 \times 10^{-4}\right)=3.94
$$

apter you have done some of these you will notice:That os long as [HA] $>100 \mathrm{Ka}$

$$
x=\sqrt{[H A]_{i} K_{0}}
$$

16.4 Estimating the pH of Acid and Base Solutions
pH of a Weak Base - Approx Method
Calculate the pH of a 0.372 M aqueous solution of
a) 5
d) 8 isoquinoline $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}, \mathrm{~Kb}=2.5 \times 10^{-9}\right)$
$\mathrm{pH}=? .0 \mathrm{~b}) 6$
(e) 9
c) 7

$$
\begin{aligned}
& 0.372>100\left(2.5 \times 10^{-9}\right) \\
& \text { thus } 0.372-x \approx 0.372 \\
& K_{e}=\frac{\left[\mathrm{CqH}_{7} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CaH}_{7} \mathrm{~N}\right]} \\
& 2.5 \times 10^{-9}=\frac{x x}{0.372} \\
& x^{2}=0.372\left(2.5 \times 10^{\circ 9}\right)
\end{aligned}
$$

$$
\begin{aligned}
X & =\sqrt{0.312\left(2.5 \times 10^{-9}\right)} \\
& : 3.05 \times 10^{-5}=\left[0 H^{\circ}\right] \\
p O H & =-\log _{10}\left(3.05 \times 10^{-5}\right)=4.52 \\
p H+p O H & =14 @ 25^{\circ} \mathrm{C} \\
p H & =14-4.52 \\
& =9.48
\end{aligned}
$$

16.5 Acid-Base Properties of Salts

Hydrolysis - Neutral Cations and Anions

