

= No ⁺ + <u>CN</u> ⁻ = HCN + OH ⁻
HCN + OH-
0 0
X X
x x
0.432 $\chi^{2} = 0.432(2.5 \times 10^{-5})$ $\chi = \sqrt{0.432(2.5 \times 10^{-5})}$ $= 3.29 \times 10^{-3} = [OH^{-}]$ $POH = -\log_{10}(3.29 \times 10^{-3}) = 2.4$ $PH + POH = 14 @ 25^{\circ}C$

17.1 Acid-Base Reactions Types of Reactions

ooid + otropa booo				
aciu + strony base	HCI(aq) + NaOH(aq) → H ₂ O(ℓ) + NaCl(aq)	7	100%
acid + weak base	HCI(aq) + NH ₃ (aq)	→ NH₄Cl(aq)	< 7	100%
base + weak acid	NaOH(aq) + HCIO(a	$Aq) \rightarrow H_2O(\ell) + NaClO(aq)$	> 7	~100%
acid + weak base	HCIO(aq) + NH ₃ (aq)	Depends on Ka Vs Kb	?
Strons Acid.	5B · Strons Bose	WA Weak Qcid	WB : Neok Bose	
ERCTION	SALT PRODUCED		<u>Hq</u>	
A + 58	$N_0(P(oq) = N_0^{\dagger} + Q^{\dagger}.$	[ation & Onion Neutral	7	
a + WB	$NH_4 O(aq) = NH_4^+ + CP^-$	NH_{4}^{\dagger} is a near acidic cation NH_{4}^{\dagger} + H ₂ O(9) \iff NH ₃ (aq) + H ₂	<u> </u>	
A + 5B	No (20 (aq.) = No ⁺ + (20°	UD is a weak basic anion	. >7	
		CPO" + H2D(9) <=> HCPO(ag) + C)H-	
A + WB	$NH_{11}(2)(\infty) = NH_{11}^{+} + CO$	NHH is a meas acidic ratio	n)	
		NH" + HO(9) <=> NH3 (00) +	H10 ⁺ ?	
		CID is a weak basic amin	n	
		$(90' + H_2)(0) \iff H(90)(0) +$	OH.	
		av monter houder		
		* pH depends on which K is &	angen. Ko on KB	
	acid + weak base base + weak acid acid + weak base Strons Ocid. ERCTION A + SB A + WB A + SB A + WB	acid + weak baseHCl(aq) + NH3(aq)base + weak acidNaOH(aq) + HClO(aacid + weak baseHClO(aq) + NH3(aqacid + weak baseHClO(aq) + NH3(aqStrons QcidSB: Strons BoseERCTIONSRLT PRODUCEDA + SBNo (Q (oq) = No ⁺ + Q')A + WBNH4 Q(oq) = NH ⁺ ₄ + Q'A + SBNo (Q (oq) = NH ⁺ ₄ + Q)A + MBNH4 Q(oq) = NH ⁺ ₄ + Q'	acid + weak base $HCl(aq) + NH_3(aq) \rightarrow NH_4Cl(aq)$ base + weak acid $NaOH(aq) + HClO(aq) \rightarrow H_2O(2) + NaClO(aq)$ acid + weak base $HClO(aq) + NH_3(aq) \rightleftharpoons NH_4ClO(aq)$ Stroms Qcid. SB Stroms Bose WA : Weak Qcid ERCTION <u>Seven Producep</u> A + SB $N_0O(aq) = N_0^+ + O'$ [atrom & Onion Neutrical A + UB $NH_4O(aq) = NH_4^+ + O'$ NH_4^+ is a weak acidic cation $NH_4^+ + H_2O(3) \iff NH_3(aq) + H_3$ A + SB $N_0O(aq) = NH_4^+ + O'$ NH_4^+ is a weak acidic cation $A + SB = N_0O(aq) = NH_4^+ + O'$ O' is a weak basic cation $A + SB = N_0O(aq) = N_0^+ + O'$ O' is a weak basic cation $A + SB = N_0O(aq) = N_0^+ + O'$ O' is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ $A + MB = NH_4O(aq) = NH_4^+ + O'$ NH_4^+ is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ $A + MB = NH_4O(aq) = NH_4^+ + O'$ NH_4^+ is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ $A + MB = NH_4O(aq) = NH_4^+ + O'$ NH_4^+ is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ $A + MB = NH_4O(aq) = NH_4^+ + O'$ NH_4^+ is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ $A + MB = NH_4O(aq) = NH_4^+ + O'$ $NH_4^+ = O'$ $NH_4^+ = O'$ $NH_4^+ = O'$ $O' = O'$ is a weak basic cation $O' = H_2O(3) \iff HCO(aq) + C$ H' = PH degends on which K is N	acid + weak base $HCl(aq) + NH_{q}(aq) \rightarrow NH_{q}Cl(aq) < 7$ base + weak acid $NaOH(aq) + HClO(aq) \rightarrow H_{2}O(\ell) + NaClO(aq) > 7$ acid + weak base $HClO(aq) + NH_{3}(aq) \Rightarrow NH_{4}ClO(aq) \rightarrow Depends on Ka Vs Kb$ Strong Qcid. SB · Strong Base WA · Med Qcid WB · Med Base ERCTION Sever ProduceD pH A + SB $N_0O(aq) = N_0^* + O'$ [atron $\notin Onion Neutral 7$ A + WB $NH_{q}O(aq) = NH_{q}^* + O'$ [atron $\notin Onion Neutral 7$ A + WB $NH_{q}O(aq) = NH_{q}^* + O'$ [atron $\notin Onion Neutral 7$ A + WB $NH_{q}O(aq) = NH_{q}^* + O'$ [O' is a useah acidic cation. <7 $NH_{q}^* + H_{2}O(n) \Leftrightarrow NH_{3}(aq) + H_{3}O^*$ $A + SB N_0O(aq) = No^* + O' O' O' is a useah acidic cation. >7A + WB NH_{q}O(aq) = NH_{q}^* + O' NH_{q}^* is o useah acidic cation. >7A + WB NH_{q}O(aq) = Nh_{q}^* + O' O' O' is a useah frasic amion. >7O' + H_{2}O(n) \Leftrightarrow NH_{3}(aq) + H_{3}O^*O' + H_{3}O(n) \Leftrightarrow O' H_{3}(aq) + H_{3}O^*O' + H_{3}O(n) (\Leftrightarrow) NH_{3}(aq) + H_{3}O^*$

$\frac{?}{HCl(aq) + NaOH(aq) = NaCl(aq) + H_2O(l)}$					
NET IONIC EQUATION :	H20(8) + H20(9) <=> H30+ + OH- ; K = Kw				
HCP(oq) + NoOH(oq) = NGCP(aq) + H2O(9) # H3O ⁺ + CP ⁻ + Na ⁺ + OH ⁻ = Na ⁺ + CP ⁻ + H2O(9) + H2O(9)	$H_{3}O^{*} + OH^{-} = 2 H_{2}O(9) ; K = \frac{1}{K_{W}}$ = $\frac{1}{1 \times 10^{-14}}$				
$H_{3}0^{\dagger} + OH^{-} = 2 H_{2}O(9)$	F IX10" K >>> 1 : Very product favored, goes 100%. Jhus = Rather than <=>				
Os we wrote HoOt on reactant side, had to add					

	HCI(aq) + NH ₃ (aq) = NH ₄ CI(aq)
NET TONIC EQUATION	•	
HCP(aq) + NH3(aq)	= NH4Olaqi	NH4 ⁺ + H2O(0) <=> NH3(aq) + H30 ⁺ : Ka = =.6×10
H30t + 12 + NH31aq) = NH4 ⁺ + <mark>()⁻</mark> + H2O(8) [*]	1
$H_{3}O^{\dagger} + NH_{3}(aq) = NH_{4}^{\dagger} + H_{2}O(g)$		$H_3O' + NH_3(aq) \iff NH_4 + H_2O(P) : K = 5.6 \times 10^{-10}$ = 1.8 × 10 ⁹
	-	K >>> 1, Very product foroned, essentially 100%
K See previous slide add H20(8) to the	as to why he had to product side.	
K See previous slide add H20(8) to the	as to why we had to product side.	

		9
	HCIO(aq) + NH ₃ (a	aq) ⇔ NH₄CIO(aq)
Net Ionic Equation:		
HClO(aq) + NH3(aq) ←> NH4 ⁺ + ClD ⁻		[unious about the pH at the equivalance point?
		Hudodeic of NH. (20
$HO(0)(00) + H_2O(0) \iff H_2O^+ + (0)^-$	K: 35×10-8	
$NH_3(aq) + H_2O(q) \iff NH_{u}^{+} + OH^{-}$	K = 1.8× 10-5	$NH_{\mu}QQ(aq) = NH_{\mu}^{+} + QQ^{-}$
HCPO(aq) + NH3(aq) + 2H20(2) ⇐> NH4 + COO + H30	+OH' K = 6.3×10-13	0) NHy is an acidic cation.
H30" + OH <=> 2 H20(8)	K [#] = 1.0 × 10 ¹⁴	b) CO' is a lasic anion.
HQIOlagy + NHslagy <=> NH4 + CIO.	K = 63	
		c) NH4 ⁺ + H2O(9) <=> NH3(aq) + H3O [−] K0= 5.6 v
K* = 1/Kw		B) (20-+ H20(8) <=> HOO(09)+OH Kg=2.9×1
		K& > Ke
K≈1: Significant quantities of r	eactants and	PH 77
products present at equilibrium		.
• • •		

