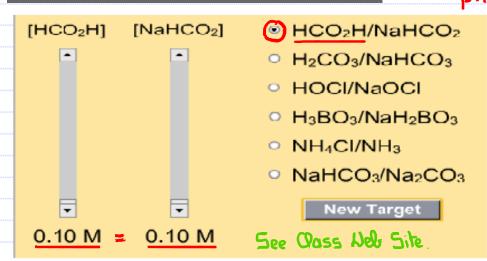
17.2 Buffers

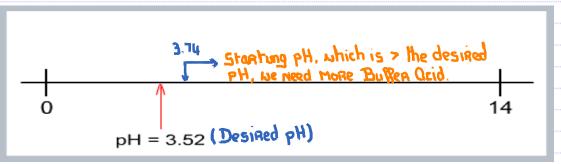
Buffer pH – The Henderson–Hasselbalch Equation

Calculate the pH of a buffer solution made from 1.00 L of a 0.133 M hydrofluoric acid and 0.243 mol of sodium fluoride.

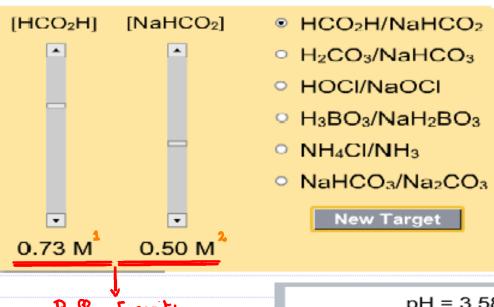

 $Ka HF = 7.2x10^{-4}$

$$PH = -log_{10}(7.2 \times 10^{-4}) + log_{10}(\frac{0.243}{0.133})$$

17.2 Buffers


Making Buffer Solutions

Preparing Buffer Solutions


$K_{A} = 1.8 \times 10^{-4}$	$pK_{n} = 3.74$
$K_a = 4.2 \times 10^{-7}$	$pK_a = 6.38$
$K_a = 3.5 \times 10^{-8}$	pK _a = 7.46
$K_a = 7.3 \times 10^{-10}$	pKa = 9.14
$K_a = 5.6 \times 10^{-10}$	$pK_a = 9.25$
$K_a = 4.8 \times 10^{-11}$	$pK_a = 10.32$

- 1) Those an acid/base combination whose acid pKa is closest to the desired pH.
- 2) adjust the acid on base concentration to get the desired pH.

17.2 Buffers Buffer Capacity

Preparing Buffer Solutions

$$K_a = 1.8 \times 10^{-4}$$
 $pK_a = 3.74$
 $K_a = 4.2 \times 10^{-7}$ $pK_a = 6.38$
 $K_a = 3.5 \times 10^{-8}$ $pK_a = 7.46$
 $K_a = 7.3 \times 10^{-10}$ $pK_a = 9.14$
 $K_a = 5.6 \times 10^{-10}$ $pK_a = 9.25$
 $K_a = 4.8 \times 10^{-11}$ $pK_a = 10.32$

Buffer Capacity

- 1. Maximum amount of OHT that can be Removed = [HEO2H] = 0.73M
- 2. Maximum amount of Ha0* that can be removed = [HEO2] = 0.50M

