24.2 Nuclear Stability Binding Energy

What is the binding energy in kJ/mol nucleons for copper-63?

Masses (g/mol): ${}^{1}_{1}H = 1.00783$; ${}^{1}_{0}n = 1.00867$; ${}^{63}_{29}Cu = 62.92980$? = $\frac{\$}{8}$ Speed of Light = $2.998 \times 10^{8} \, \text{m.s}^{-1}$ Eb = X.XXXXXX10?

$$\Delta E = \Delta m c^{\lambda}$$
= 5.9205 × 10⁻⁴ (2.998 × 10⁸)^{\lambda}
= 5.3213 × 10¹³ J. mol⁻¹
= 5.3213 × 10¹⁰ kJ. mol⁻¹

24.2 Nuclear Stability Relative Binding Energy

24.3 Kinetics of Radioactive Decay

Rate of Decay

Radioactive Decay follows first order kinetics.

FIRST ORDER KINETICS RECALL:

A - products

Amtegrated Rate law:

$$ln \frac{[A]_t}{[A]_0} = -kt$$

Half life:

$$t \frac{1}{2} = \frac{\ln 2}{h}$$

Radioactive Decay:

Substitute N - the number of Nuclei - for A

$$\int_{\Omega} \frac{[N]_t}{[N]_0} = -kt$$

$$t = \frac{\ln 2}{R}$$

24.3 Kinetics of Radioactive Decay Rate of Decay

Radioactive radon-222, found in many homes, is a potential health hazard. The halflife of radon-222 is 3.82 days. How much time is required for the activity of a sample of radon-222 to fall to 19.5 percent of its original value?

$$t_{1/2} = \frac{J_0 2}{R}$$

$$3.82 = \frac{0.693}{A}$$

$$3.82 = 0.693$$

$$R = \frac{0.693}{3.82} = 0.1815$$

$$\int_{0}^{\infty} \frac{[N]^{t}}{[N]_{0}} = -kt$$

$$[N]_{t} = 0.195 \qquad [N]_{0} = 1$$

$$\int_{0}^{\infty} 0.195 = -0.1815 t$$

$$-1.6348 = -0.1815 t$$

$$t = -\frac{1.6348}{-0.1815} = 9 \text{ days}$$

24.3 Kinetics of Radioactive Decay

Radioactive Dating

An artifact classified as seeds, found in a site at Newlands Cross, Ireland, is found to have a ¹⁴C radioactivity of 9.71x10⁻² counts per second per gram of carbon. If living carbon-containing objects have an activity of 0.255 counts per second per gram of carbon, estimate the age of the artifact?

The half-life of ¹⁴C is **5730 years**

$$tx_2 = \frac{\ln 2}{R}$$

$$tx_2 = 5730 \text{ years}$$

$$\int_{\Omega} \frac{[N]_{t}}{[N]_{o}} = -kt$$
 $[N]_{t} = 97110^{-2}$
 $[N]_{o} = 2.5510^{-1}$

$$\int_{\Omega} \frac{9.71 \times 10^{-2}}{2.55 \times 10^{4}} = -1.21 \times 10^{-4} t$$

$$\int_{0.381} = -1.21 \times 10^{-4} t$$

 $-0.965 = -1.21 \times 10^{-4} t$
 $t = \frac{-0.965}{-1.21 \times 10^{-4}} = 7.98 \times 10^{3} = 7980 \text{ years}$

24.5 Applications and Uses of Nuclear Chemistry

Nuclear Medicine - Positron Emission Tomography

Short Rived isotopes:

5 A A A A 5 A ... 1 4 D

C: ~ 20 minutes

N: ~ 10 minutes

0: ~ 2 minutes

F: ~ 110 minutes

most common.

24.5 Applications and Uses of Nuclear Chemistry Nuclear Medicine – Positron Emission Tomography

24.5 **Applications and Uses of Nuclear Chemistry**

Radioactivity in the Home

Soultion:

Seal all cracks.
Ventilate the bosement.