

Vapor Pressure 11.2 **Heat of Vaporization** \rightarrow The armount of heat required to convert a liquid to a gas: ΔH_{VAP}^{o} Which of the following molecules would you expect to have the smallest ΔH^{o}_{vap} a) CH_3OH b) $C_2H6 \checkmark$ c) C_4H_{10} -> Nhy ? Non-polar with a shaller Molor Mass than [4H10, which is also non-polar. [H30H is polar.

	$\int P = \frac{-\Delta H_{VAP}^{\circ}}{RT} + C$	ΔH ^v AP = Heat of Vaporization
0) GRAPHICE	ALLY :	
	Plot ImP Vs 1/T : Slope = - AHvap	T must le in K
	R	
&) QUANTIT	ATINELY :	
	$\int n P_1 = -\frac{\Delta \pi v_{AP}}{R \tau_1} + C$	$: \int_{\Omega} P_2 = -\frac{\Delta H_{VAP}}{RT_2} + C$
	$\int_{n} P_{2} - \int_{n} P_{1} = -\frac{\Delta H_{w}}{RT}$	AP AHNAP
		2 + C + RT1 - C
	$\int_{\Omega} P_2 - \int_{m} P_1 = \frac{\Delta H}{R^2}$	$\frac{\Delta H_{vap}}{\Delta H_{vap}}$
		ri rta
	$\int_{\Omega} \frac{P_2}{2} = \Delta H$	$\frac{v_{RP}}{2} \left(\frac{1}{r_{r}} - \frac{1}{r_{r}} \right)$

11.2 Vapor Pressure Clausius-Clapeyron Equation – Graphical Method

Determine enthalpy of vaporization graphically

From the following vapor pressure of an estimate of the molar heat of vap	
$\int n \frac{P_{2}}{P_{1}} = \frac{\Delta H^{0}_{VAP}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ $P_{1} = 100 \qquad T_{1} = 315$ $P_{2} = 400 \qquad T_{2} = 351$	
$\int_{n} \frac{400}{100} = \frac{\Delta H_{VAP}^{o}}{R} \left(\frac{1}{315} - \frac{1}{351} \right)$	$\Delta H_{VRP}^{o} = \frac{1.39(8.314)}{3.26\times10^{-4}}$
$f_{n} + (R) = \Delta H_{NAP}^{\circ} (3.26 \times 10^{-4})$	= 3.54 × 10 ⁴ J. mol ⁻¹ or 35.4 hJ. mol ⁻¹

13.1		larity, Molality, Mole Fraction, Weight %	
	Solution = Solute + Solvent that which is present in the greatest amount.		
Molarity:		Mole Fraction:	
↓ Ih	e only one you net in Chem 111		
M =	Moles of solute Volume of the solution im L	X = <u>motes of solute</u> motes of solute + motes of solvent	
Draw	BACK: We know Nothing quantity Nise about the solvent.		
Molality:		Weight %:	
m	= moles of solute moss of solvent (Rg)	$Mt \% of A = \left(\frac{mass of A}{mass of A + mass B + \dots}\right) 100$	
Drawe	BACK: Ne know mothing quantity Nise about the solution.		