14.3 Rate Laws

Determining Rate Law Using the Method of Initial Rates

Previously we did this the long way, this line we will shoat cut it!

14.4 Concentration Changes over Time Integrated Rate Laws

Integrated Rate Laws for Reactions of Type $A \rightarrow$ Products

Reaction Order	Rate Law	Integrated Rate Law
Zero order	rate $=k[\mathrm{~A}]^{0}=k$	$[\mathrm{~A}]_{t}=[\mathrm{A}]_{0}-k t$
First order	$*$	rate $=k[\mathrm{~A}]$
Second order	rate $=k[\mathrm{~A}]^{2}$	$\frac{[\mathrm{~A}]_{t}}{[\mathrm{~A}]_{0}}=-k t$
A$]_{t}$	$=\frac{1}{[\mathrm{~A}]_{0}}+k t$	

t : time.
$[A]_{0}=$ Initial concentration at $t=0$.
[A]e [concentration at $t=t$.

$$
\begin{aligned}
& A=P_{\text {products }} \\
&-\frac{\Delta[A]}{\Delta t}=k[A] \\
& \frac{d[A]}{d t}=-k[A] \ldots \text { if } \Delta \text { is very small } \\
&\left(\frac{1}{[A]}\right) d[A]=-k d t
\end{aligned}
$$

$$
\begin{gathered}
\int_{t=0}^{t: t}(1 /[A]) d[A]=\cdot k \int_{t=0}^{t: t} d t \\
\quad \operatorname{Sn}[A]_{t} \cdot \operatorname{Sm}[A]_{0}=-k t \\
\quad \operatorname{Sn} \frac{[A]_{t}}{[A]_{0}}=-k t
\end{gathered}
$$

14.4 Concentration Changes over Time

Integrated Rate Laws
The decomposition of nitrous oxide

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

is second order in $\mathrm{N}_{2} \mathrm{O}$ with a rate constant of $1.20 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.
If the initial concentration of $\mathrm{N}_{2} \mathrm{O}$ is 1.79 M , the concentration of $\mathrm{N}_{2} \mathrm{O}$ will be 0.187 M after how many seconds. $\sim ?, 000 \mathrm{~s}$

$$
\begin{aligned}
& \frac{1}{[A]_{t}}=\frac{1}{[A]_{0}}+k t \\
& {[A]_{0} }=1.79 \mathrm{M} \\
& {[A]_{t} }=0.187 \mathrm{M} \\
& \mathrm{k}=1.20 \times 10^{-3} \mathrm{M} . \mathrm{s}^{-1} \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{0.187} & =\frac{1}{1.79}+1.20 \times 10^{-3} t \\
5348 & =0.5587+1.20 \times 10^{-3} t \\
1.20 \times 10^{-3} t & =5.348=0.5587 \\
t & =\frac{4.7893}{1.20 \times 10^{-3}}=3.991 \mathrm{~s}
\end{aligned}
$$

14.4 Concentration Changes over Time

 Graphical Determination of Reaction Order
Determining the Rate Equation: Graphical Method

Description

The rate law for reactions involving a single reactant can be determined using the graphical method. This method involves constructing a series of plots of concentration vs. time data and analyzing the plots to extract the reaction order and the rate constant.

The general reaction used for this tutor is:

$$
A \longrightarrow C
$$

The concentration vs. time data at right were collected by running the reaction at a constant temperature. These are data taken for a single trial of the reaction.

Rate $=\square[A] \square$

14.4 Concentration Changes over Time

 Graphical Determination of Reaction Order| Reaction Order | Integrated Rate Law | Rearranged Rate Law | Straight-Line Plot |
| :---: | :---: | :---: | :---: |
| Zero order | $[\mathrm{A}]_{t}=[\mathrm{A}]_{0}-k t$ | $\begin{aligned} {[\mathrm{A}]_{t} } & =-k t+[\mathrm{A}]_{\mathrm{O}} \\ y & =m \mathrm{x}+b \end{aligned}$ | $\begin{aligned} & y=[\mathrm{A}]_{t} \\ & x=t \\ & \text { slope }=-K \end{aligned}$ |
| First order | $\ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{\mathrm{O}}}=-k t$ | $\begin{aligned} \ln [\mathrm{A}]_{t} & =-k t+\ln [\mathrm{A}]_{0} \\ y & =\operatorname{mx}+b \end{aligned}$ | $\begin{aligned} & y=\ln [\mathrm{A}]_{t} \\ & x=t \\ & \text { slope }=-K \end{aligned}$ |
| Second order | $\frac{1}{[\mathrm{~A}]_{t}}=\frac{1}{[\mathrm{~A}]_{\mathrm{O}}}+k t$ | $\begin{aligned} \frac{1}{[\mathrm{~A}]_{t}} & =k t+\frac{1}{[\mathrm{~A}]_{\mathrm{O}}} \\ y & =m x+b \end{aligned}$ | $\begin{aligned} & y=1 /[\mathrm{A}]_{t} \\ & x=t \\ & \text { slope }=K \end{aligned}$ |

Rate : $k[A]^{\circ}$
$=k$
$=0.065$

Rate : $k[A]$
: $0.998[\mathrm{~A}]$

Rate $=k[A]^{2}$
$=0.861[A]^{2}$

Slope $=-k$
Slope: $-k$
Slope $=k$
14.4 Concentration Changes over Time

Reaction Half-Life

$$
\begin{aligned}
& \operatorname{Sm}\left(1 / 2[A]_{0}\right)=-k t / 2+\operatorname{Sm}[A]_{0} \\
&-k t / 2=\operatorname{Sn}\left(1 / 2[A]_{0}\right)-\operatorname{Sm}[A]_{0} \\
&=\operatorname{Sn} 1 / 2+\operatorname{Sm}[A]_{0}-\operatorname{Sm}[A]_{0} \\
&=\operatorname{Sm} 1 / 2 \\
&=\operatorname{Sm} 1-\operatorname{Sm} 2 \\
&=0-\operatorname{Sm} 2 \\
&=k t / 2 \\
& k L / 2=-\operatorname{Sm} 2 \\
& \operatorname{Sm} 2 \\
& t 1 / 2=\frac{\operatorname{Sn} 2}{R}
\end{aligned}
$$

14.4 Concentration Changes over Time

Reaction Half-Life

Nitrogen-13 is used in tracers injected into the bloodstream for positron emission tomography (PET). The half-life of nitrogen-13 is 10.0 minutes. How much time is required for the mass of a sample of nitrogen- 13 to fall to 6.25 percent of its original value? Since the decomposition is a radioactive decay reaction, it is first order.

$$
\begin{aligned}
& \operatorname{fn} \frac{[A]_{t}}{[A]_{0}}=-k t ; \quad t / 2=10 \mathrm{~min} ; \quad \frac{[A]_{t}}{[A]_{0}}=0.0625 \\
& t / 2=\frac{\rho_{m} 2}{R} \\
& \sin \frac{[A]_{t}}{[A]_{0}}=-h t \\
& 10=\frac{\rho m 2}{k} \\
& \operatorname{Sm}(0.0625)=-6.930 \times 10^{-2} t \\
& 10 \mathrm{~h}=\operatorname{Sm} 2 \\
& t=\frac{\operatorname{Sm}(0.0625)}{-6.930 \times 10^{-2}} \\
& h=\frac{\rho_{m} 2}{10}=6.930 \times 10^{-2} \mathrm{~min}^{-1} \\
& =40 \text { minutes }
\end{aligned}
$$

