
14.5 Activation Energy and Temperature Reaction Coordinate Diagrams

 E	٥	=	Qc	tiva	tion	Emer	ay.
							-

DE : Eproducts - EREACTANTS	DE = EPRODUCTS - EREACTANTS
40	> 0
Exolhermic	Endo theamic
•	

. <u>Eo</u>	- <u>Eo</u>
$\frac{E_{0}}{R} = Ae^{RT}$	$\mathbf{k}_1 = \mathbf{A} \mathbf{e}^{\mathbf{K} \mathbf{T}_1} \qquad \vdots \qquad \mathbf{k}_2 = \mathbf{A} \mathbf{e}^{\mathbf{R} \mathbf{T}_2}$
	$\frac{F_{0}}{RT_{1}} = \frac{F_{0}}{RT_{2}}$ $\frac{F_{0}}{RT_{2}} = \frac{F_{0}}{RT_{2}}$ $\frac{F_{0}}{RT_{2}} = \frac{F_{0}}{RT_{2}}$ $\int_{n} k_{1} = \int_{m} (Ae^{-\frac{F_{0}}{RT_{2}}}) = \int_{m} k_{2} = \int_{n} (Ae^{-\frac{F_{0}}{RT_{2}}})$
A: Rate constant.	$J_n k_i = J_m (Ae^{K''}) = J_m k_2 = J_n (Ae^{RT_2})$
A: BREquency factor.	
A : Inequency factor Ea : Octivation Gnergy R : Ideal Sas Constant	$\int R_{2} - \int R_{1} k_{1} = \frac{\ln A}{\ln A} + \int R e^{\frac{E_{0}}{RT_{2}}} - \int R A - \int R e^{\frac{-E_{0}}{RT_{1}}}$
R : Ideal Sas Lonstant	Jn R2 - Jm Ri = Jn A + Jn C *** - Jm A - Jm C ***
T: Jemperature in K	
	$\int n k_2 - \int m k_1 = -\frac{E_0}{RT_2} - \left(-\frac{E_0}{RT_1}\right)$
A: Measure of the number of collisions	<u> </u>
that take place with the correct	
orientation	$e R_2 = E_0 \left(1 + 1 \right)$
	$\int n \frac{R_2}{R_1} = -\frac{E_0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$
<u>- Eo</u>	
e AT: JAACTION of the collisions that occur	
with sufficient energy to overcome Ea.	
o) Eo T then e RT & R &	
B) Eat then e ATT AT	

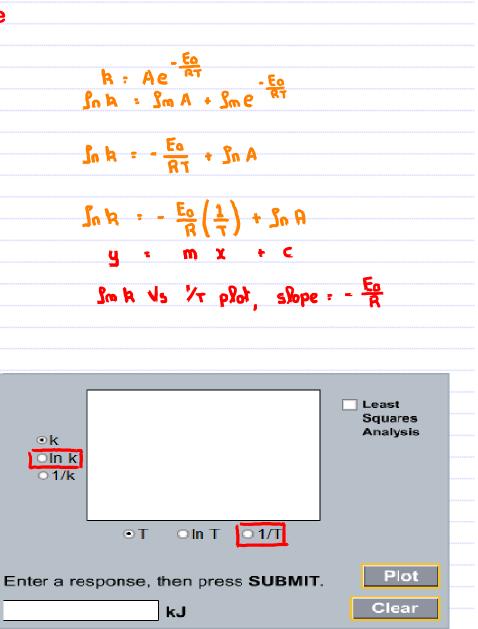
$P_{n} \frac{R_{2}}{R_{1}} = -\frac{E_{0}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right)$ $E_{0} = 144,000 \text{ J} (Remember, R \text{ is in J})$ $T_{1} = 495 \text{ K} \qquad T_{2} = 531 \text{ K}$ $R_{1} = 6.02 \times 10^{-4} \qquad R_{2} = ?$	$\int n \frac{h_{2}}{6.02 \times 10^{-4}} = -\frac{144,000}{8.314} \left(\frac{1}{531} - \frac{1}{495}\right)$ $\int n h_{2} - \int m \left(6.02 \times 10^{-4}\right) = -17320, 2 \left(-1.3696 \times 10^{-1}\right)$ $\int n h_{2} + 7.4152 = 2.3722$
$R_1 = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	$\int m R_{2} = 2.3122 - 1.4152$ $\int n R_{2} = -5.043$ $R_{2} = 6.45 \times 10^{-3} \text{ s}^{-1}$

14.5 Activation Energy and Temperature Graphical Determination of Ea

The Arrhenius Equation

Question 1 of 3

The rate of the reaction


 $N_2O_5(g) \longrightarrow 2 NO_2(g) + \frac{1}{2}O_2(g)$

is measured at different temperatures, with the following rate constants, k, determined:

Temperature, K	k, s ⁻¹
298	3.46 x 10 ⁻⁵
328	1.5 x 10 ⁻³
358	3.34 x 10 ⁻²
378	0.21

What is the activation energy, E_a, for this reaction in units of kilojoules?

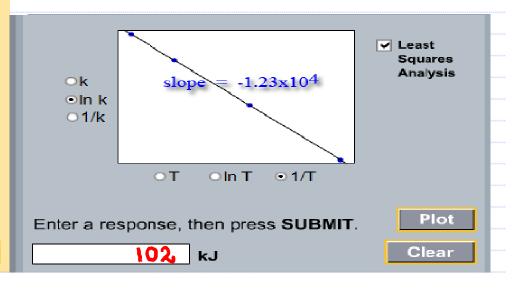
Submit

14.5 Activation Energy and Temperature Graphical Determination of Ea

The Arrhenius Equation

Question 1 of 3

The rate of the reaction


 $N_2O_5\left(g\right) \longrightarrow 2 \ NO_2\left(g\right) + \frac{1}{2}O_2\left(g\right)$

is measured at different temperatures, with the following rate constants, k, determined:

Temperature, K	k, s ⁻¹
298	3.46 x 10⁻⁵
328	1.5 x 10 ⁻³
358	3.34 x 10 ⁻²
378	0.21

What is the activation energy, E_a , for this reaction in units of kilojoules?

Submit

= -1,23 × 104

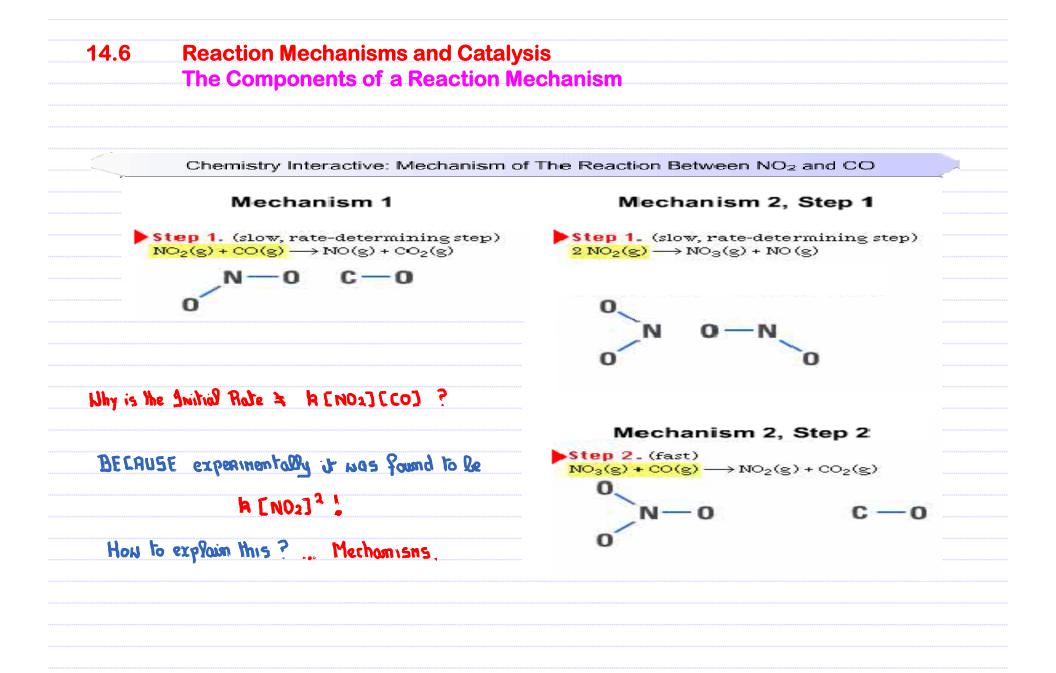
= -1.23×104

= -1,23 × 10⁴ (8,314) = 1,23 × 10⁴ (8,314)

OR

1.02 × 10 5 J. mol-1

102 h J. mol .1


5lope

Ea

- Ea

En

•

